Hardware-Accelerated Geometry Instancing for
Surfel and Voxel Rendering of Scanned 4D Media

Marcos Slomp, Hiroshi Kawasaki Ismael Daribo Ryusuke Sagawa Ryo Furukawa, Shinsaku Hiura, Naoki Asada

Kagoshima University NII Japan

Abstract—Range scanners based on camera-projector setups
permit capturing dynamic objects at high frame rates at afford-
able costs, producing a time-varying set of points. This paper
establishes a 4D media framework for acquiring, compressing
and displaying these point clouds, albeit with more emphasis
on the rendering aspects. Displaying these point clouds requires
techniques capable of alleviating irregularities that are inherent
in these low cost high-speed scanners. One of the contributions
of this paper is a simple, general surfel splatting method that
mitigates these imperfections. Rendering must also react quickly
to the volatility of the 4D media dataset and cope with reasonably
large quantities of points. To that end, this paper exploits modern
features of the graphics hardware, namely geometry amplification
and instancing, for efficient streaming and displaying of point
clouds as either surfel or voxel primitives. A comparative per-
formance analysis of the investigated strategies is also available.

I. INTRODUCTION

Inferring three-dimensional information from real objects is
an important subject in computer vision. In recent years, hard-
ware setups for 3D scanning have become largely available and
affordable. End-users are now benefiting from breakthroughs in
human-computer interaction, virtual reality and telepresence,
on what was once exclusive technology for engineering, pro-
cess automation, robotics and medical systems.

Range scanners built upon camera-projector configurations
are capable of capturing fast moving entities at high frame
rates. The amount of geometrical data produced by these scan-
ners, however, imposes challenges on the storage, streaming
and displaying of the time-varying three-dimensional informa-
tion (4D media assets). This paper focuses on the rendering
aspects of 4D media. Rendering must react quickly to these
assets for smooth playback. Therefore, a robust rendering
engine should produce attractive results given the time, volume
and reconstruction constraints, with minimum lagging for
preprocessing or stream preparation.

Scanners based on camera-projector setups produce a time
series of 3D point samples, referred to as point clouds.
Polygonal representations are also feasible, although likely to
increase the overall processing time and storage requirements.
In addition, maintaining polygonal consistency across multiple
poses is difficult and prone to damaging compression efficiency
and the smoothness of the rendering. Since point clouds com-
prise a more natural, robust and widely adopted representation
for 3D scanning systems, the techniques described in this paper
are geared towards rendering point-based input.

The graphics hardware has historically supported point
primitives. Naive point-cloud rendering engines for such hard-

AIST Japan

Hiroshima City University

ware can therefore be implemented without much effort.
Although fast to render, these straightforward point cloud
visualizers bring many issues: holes in the surface, no back-
face culling, limited per-point size control and harsh silhouettes
due to screen-aligned square-shaped point splatting. Some
hardware manufacturers provide palliative extensions to mit-
igate some of these problems, such as vertex culling, view-
dependent variable point sizes, smooth points and point-sprites.

Surfels (short for “surface elements”) provide an alterna-
tive way for displaying point-based geometry. A surfel is a
geometrical extension of a point that can be though of as an
oriented, flat microfacet surface patch. The orientation of the
surfels follow the curvature of the surface they approximate,
thus allowing for smoother silhouettes, while their sizes serve
the purpose of filling holes on the surface.

One disadvantage of surfels is the absence of general
mechanisms for handling level of detail (LOD). Displaying
detailed geometry in lower-resolution viewports is not only a
waste of processing, bandwidth and memory resources, but
also prone of introducing rendering artifacts due to high-
frequency aliasing. Multiresolution surfel-based representa-
tions are possible at the cost of increased memory requirements
and processing time. This ultimately escalates the complexity
of managing, storing and displaying 4D media assets.

A perhaps less conventional approach for representing
point clouds is through voxel hierarchies. Although com-
monly employed on dense volumetric data-sets, sparse voxel
representations of hollowed surfaces have gained momentum
recently in computer graphics. One of the many advantages of
voxel hierarchies is the fact that they can elegantly address
LOD and progressive rendering. Moreover, since geometry
can be represented implicitly within a voxel hierarchy, storage
requirements are reduced — or at least compete — with their
polygonal, point, or surfel-based counterparts.

The main contributions of this paper are: the establishment
of a complete framework for acquiring, compressing and
rendering 4D media; the use of hardware-accelerated geometry
instancing for fast rendering of surfels and voxels; a surfel
splatting technique suitable for covering irregularities inherent
in the recommended 4D scanning framework; a simple and ef-
fective stop criterion for octree-based hierarchical subdivision
of point clouds; and a comparative analysis of the different
hardware instancing rendering methodologies studied.

The remainder of the paper is structured as follows: Sec-
tion II compiles the related work of the research; Section III
provides an overview of the entire framework; Section IV
discusses hardware instancing; Sections V and VI describes,

respectively, surfel and voxel rendering techniques for point
clouds; Section VII depicts additional results and a discussion
of the methods; finally, Section VIII concludes the paper and
points future research opportunities.

II. RELATED WORK

Surfels as rendering primitives were introduced by Pfister
et al. [1] to mitigate point-based rendering issues. Intuitively,
these “surface elements” can be thought of as microfacet
extensions of points, often rendered as oriented quadrilaterals.
The method combines aspects from point, polygon and image-
based rendering, being influenced by sprite-based techniques
(billboards, or impostors) that until then were used for geo-
metric level of detail [2]. In contrast to pure image-based ren-
dering approaches, surfels allow for view-independent, object-
centered representations of arbitrary surfaces.

Zwicker et al. later improved the rendering quality of
surfels using screen-space elliptical-weighted average (EWA)
filtering [3]. Ren et al. followed by proposing an object-
space formulation for the EWA filtering that was more suitable
for hardware acceleration [4]. Unfortunately, EWA filtering
assumes hermetic surfaces which are difficult to reconstruct
with the high-speed 4D moving object scanning framework
that this paper builds upon. As a contribution, this paper offers
a simplified surfel splatting mechanism to reduce surface holes
due to irregularities during moving object scanning.

In any case, surfel rendering of point clouds requires
promoting points to oriented quadrilaterals. This geometrical
amplification is performed by the CPU prior to submitting
the surfels for rendering to the GPU. An alternative is to
preprocess the surfels, but this implies in increased memory
and CPU-GPU bandwidth usage. The work of Guennebaud
and Paulin is a notable exception [5]. They use regular point
splatting and “skew” the screen-aligned square-shaped appear-
ance of the splats programmatically in a fragment shader.
The technique, however, relies on less trivial branching paths
and discard instructions that are notorious for affecting frag-
ment shading performance. As another contribution, this paper
investigates and compares recent graphics hardware features
applied to real-time surfel amplification and instancing.

Level-of-detail for surfels is generally achieved through
hierarchical structures that encode multiresolution surfel infor-
mation. Examples of techniques include the work of Yamazaki
et al. [6] and the ones surveyed by Kobbelt and Botsch [7].
These schemes are difficult to apply for 4D media rendering
due to the additional memory and processing time required.

Voxel hierarchies, on the other hand, are simpler than
multiresolution surfel hierarchies since geometry can be repre-
sented implicitly. The literature on voxel rendering is extensive
and much of it is out of the scope of this paper. More
notably, Laine and Karras have recently investigated the use of
sparse voxel octrees (SVO) as an alternative to polygons for
real-time high-quality rendering in current graphics hardware
technology [8]. As will be demonstrated in this paper, point
clouds can be efficiently encoded as sparse voxel octrees.

Contrary to Laine and Karras — and to conventional voxel
rendering paradigms in general — this paper focuses on ren-
dering voxels through rasterization instead of ray-casting. The

reason is the fact that despite recent advances towards more
general-purpose graphics hardware, the underlying pipeline
remains largely raster-oriented. The same hardware-accelerated
geometry amplification and instancing techniques that this
paper proposes for surfels can be likewise applied for efficient
voxel rasterization.

III. A FRAMEWORK FOR 4D OBJECT SCANNING

Data acquisition is performed through a number of cameras
that register the patterns extruded by multiple projectors. The
distribution of cameras and projectors around the target scene
allows for entire shape scanning. The speed of the capturing
process is only limited by the frame rate of the cameras.
Multi-colored patterns are used to improve the accuracy and
robustness of the final reconstruction. These image frames
are later analyzed, wherein intersection points of the extruded
patterns are identified. The correspondences between these
points and the projection patterns are then established and
surface reconstruction is obtained via triangulation. A complete
description of the measurement system can be found in [9].

The raw output of the system is a time series of points.
Surface normals and splat sizes are estimated by analyzing
the vicinity around each point at each time frame. Textures,
however, are not readily available since the multi-colored
projected patterns interfere with the optical proprieties of
the surfaces. This remains as an open problem for camera-
projector setups that do not rely on monochromatic, white-
colored patterns. For rendering purposes, in this paper a fake-
color is assigned to each point based on their normal vectors.

Noise and irregularities are inherent in these time-varying
point clouds, complicating their compression. The technique
proposed by Daribo et al. [10] is capable of addressing these
issues. Their encoder first promotes each raw point cloud
into sets of 3D space curves. A competitive-based predictive
unit removes the spatial and temporal correlation along and
across the 3D space curves. Finally, a rate-distortion (RD)
cost computation control guarantees the best trade-off between
the utilized bitrate and end-to-end quality. Decoding takes
the opposite direction by providing point clouds from the
internally compressed curve-based representations.

At the very end of the framework is the rendering infras-
tructure, which attempts to synthesize images of the recon-
structed point clouds. Rendering speed is severely constrained
by the surface reconstruction and compression stages that
precede it. In a more practical view, these former stages
are favorably performed offline. Only the fully encoded 4D
asset is allegedly streamed for rendering. Therefore, decoding
performance is what actually restricts rendering speed.

A more aggressive and isolated rendering design approach
will be taken in this paper. It is assumed that the decoder incurs
zero overhead to the rendering stage, i.e., the point clouds are
promptly available for displaying. The challenge is then to
respond quickly and effectuate quality rendering only with the
point attributes available. Given the amount of data contained
in these 4D media assets, the rendering engine can spare little
time for stream preparation or preprocessing.

IV. HARDWARE-ACCELERATED GEOMETRY INSTANCING

Point clouds consist of sequences of point attributes such as
position, normal vector, color and splat size. Surfels, however,
are represented as aligned quadrilateral patches; similarly,
octree voxels are best realized as cubes. The process of
promoting points to higher-level primitives — like billboards or
cubes — is known as amplification. In addition, the replication
and transformation of large quantities of amplified geometry
based on different attributes is known as instancing.

One of the contributions of this paper is the investigation
of modern graphics hardware features suitable for real-time
amplification and instancing of surfels and voxels. As will be
seen, this can be accomplished either programmatically on the
Geometry Shader unit or via a hardware-controlled geometry
instancing pipeline, as shown in Figure 1. From the perspective
of the CPU, its solely task, aside from setting the appropriate
GPU state, is to pack each point attribute into a buffer and issue
a single draw call on that buffer. The buffer itself is therefore
nothing more than a mirrored copy of the point cloud data
array. This not only guarantees the immutability of the point
cloud data, but also yields optimal streaming efficiency, draw
batching and CPU-GPU bandwidth usage.

A. Geometry Instancing Using the Geometry Shader

The Geometry Shader is a relatively new component of
the graphics hardware pipeline, sitting in between the Vertex
Shader and the Fragment Shader. This unit enables program-
matic modifications on the geometry and topology of input
rendering primitives as they flow through the pipeline. Modifi-
cations include both geometry amplification and simplification.
Amplifications can be dynamic and arbitrary, but restricted to
moderate levels, as the unit is ill suited for heavy tessellation of
primitives. Fortunately, only constant-size amplifications, like
quadrilaterals or cubes, are of interest in this paper.

Based on the above assumptions, the Geometry Shader unit
is configured to accept point primitives and to output trian-
gle strips. The actual description of the amplified geometry
(the template) resides inside a user-defined program which is
loaded into the Geometry Shader unit. Besides amplification,
the geometry program is also responsible for instancing the
augmented primitive. This means transforming the coordinates
of the canonical template according to the respective point
attributes. The only responsibility of the vertex program is to
forward point attributes, untouched, to the Geometry Shader.
Object, world, view and projection transformations take place
within the geometry program running in the Geometry Shader.
The process is depicted in Figure 1a.

B. Geometry Instancing Using the Instancing Pipeline

Hardware instancing allows for the rendering of identical
objects in large quantities. The general idea is to keep a single
geometric description of an object (the template) in video
memory and render it many times using only a single draw call.
In contrast with the Geometry Shader, hardware instancing
does not require a programmatic descriptions of the template
object, and has no restrictions regarding the complexity of the
template geometry. In fact, the Geometry Shader unit is not
involved at all here. Although primarily intended for rendering
multiple instances of relatively dense polygonal meshes with

different attributes, the instancing pipeline can be used to great
effect for surfel and voxel rendering.

While in instancing mode, the GPU will reissue the same
template geometry repeatedly. Each time, a special register, the
instance identifier, is incremented and exposed to the Vertex
Shader. For each instance, all vertices of the template will have
the same instance identifier. A vertex program then uses this
identifier to explicitly index per-instance (per-point) attributes
from a buffer. Having retrieved the correct attributes, the vertex
program performs the appropriate coordinate transformations.
The hardware instancing pipeline is illustrated in Figure 1b.

The hardware offers three ways to specify and address per-
instance attributes in buffers within the vertex program:

o Uniform Buffers expose per-instance data as regular shader
uniform array variables. The maximum size of such buffers is
rather limited (typically 64KB), however. This limitation can
be circumvented by issuing multiple draw calls on multiple
buffers (or subregions of a larger buffer).

o Textures and Texture Buffers embed per-instance data into
texels which must be retrieved through texel-fetching instruc-
tions. The data has to be converted and encoded according
to the pixel description of the texture. The maximum size is
constrained by the video memory and the maximum texture
resolution (and texel format) supported by the hardware.

o Regular Vertex Buffers feed per-instance data as regular
vertex attribute shader variables. This dispenses the need for
the instance identifier: the hardware itself takes care of loading
per-instance data in the appropriated registers prior to invoking
the vertex program. The amount of video memory available is
the only buffer size restriction.

V. SURFEL RENDERING TECHNIQUES

Surfels can be represented as oriented, texture-mapped
quadrilaterals, much to the likes of billboards. However, while
billboards are typically aligned with respect to view or world
constraints, surfels align themselves to the curvature of the
surface of the object they represent.

For all purposes, a generic template for a surfel can be
specified as the flat quadrilateral enclosed by the extreme
vertices ¢min = (—1,—1,0) and ¢maer = (+1,+1,0). When
rendering, this canonical template will be rotated, scaled and
translated according to the attributes of the surfel. Each surfel
is assumed to have the following attributes: a position p,
a unit-length normal vector 7, a half-edge length r and
a color. A circular, rotationally-invariant Gaussian-smoothed
monochromatic texture mask is also assumed for shading.
Refer to Figure 2 for the complete surfel rendering pipeline.

A. Surfel Alignment and Transformation

The process of splatting a surfel begins by aligning,
stretching and positioning its billboard according to its surfel
attributes, as illustrated in Figure 2a. This is done by post-
multiplying each of the four vertices of the template by the
following matrix product:

T(p)-S(r,r,1) - R(u, v, 1)

CPU 2. GPU

Video Memory

vertex buffer |
|

upload points

and point
vertex* attributes

template

triangle
strip

point primitive
regular draw call

Geometry
Shader

(a) Using the Geometry Shader unit.

wnl
21 GPU (video Memory

CPU

upload points

vertex buffer

1
instance-id * point attributes

vertexﬁ Vertex .

Shader vertex
(b) Using the instancing pipeline.

load t lat:
upload template FEmEIETe]

triangle strip prim.
instanced draw call

Fig. 1: Hardware-accelerated geometry amplification and instancing.

where T', S and R denote transform matrices for translation,
scale and rotation, respectively, in homogeneous space. Ex-
panding the formula yields:

1 0 0 ps r 0 0 O Up Vg Nz 0
01 0 py 0 r 0 O Uy vy ny 0
0 0 1 p, 001 0| | u v, my, O
0 0 0 1 0 0 0 1 0O 0 0 1

For the unknown vectors « and ¢ above, this paper suggests
the use of a dual cross product formulation:
Uu=dxfn and V=mx1uU

where @ = (0,1,0). The cross products above are applicable
as long as 7 is not parallel to d@, at which the vector d’ =
(0,0,—1) takes place. In addition, one must ensure that both
4 and ¥ are normalized prior to the computation of the rotation
matrix above; this can be secured by normalizing « after its
computation, thus eliminating the need for normalizing .

Note that this dual cross-product formulation is viable
because surfels are assumed to be shaded later as disks through
a rotationally-invariant circular texture mask. Had this not
be the case, each point would have to include tangent and
binormal vectors to replace « and v accordingly. In this paper,
surfel billboards are also assumed to be isotropic; otherwise,
the scaling matrix would also have to be modified to account
for distinct half-edge lengths 7, and r,. Also note that the
matrix product above produces coordinates in object space.
These coordinates should be further transformed by the usual
world, view and projection matrices for proper rendering.

B. Shading Surfels

Once the quadrilaterals have been transformed, the pipeline
performs back-face culling and schedules front-facing geom-
etry for rasterization. Each fragment of a rasterized surfel is
then shaded based on its color. Transparency is determined
by sampling a circular, Gaussian-smoothed monochromatic
texture mask. To that end, texture coordinates have to be
assigned to each vertex of the template when it is first specified.
Lighting can be performed in a per-instance, per-vertex or per-
fragment basis. Finally, the shaded fragment is forwarded to
the later stages of the pipeline and, if the fragment carries
through the depth-test, blended on the color buffer. The entire
surfel shading process is depicted in Figure 2b.

At this point, it is already possible to present on screen
a snapshot of the scanned object. However, sharp square-
shaped boundary artifacts are likely to appear, as can be seen
in Figure 3a. This is due to alpha-blending and the relative
rendering order of the surfels. One simple way to address such
problem is by disabling depth buffer operations completely.

color
buffer

i

texture
mask

transparency

o

instancing

point o]
(vertex) amplification (transformation) color lighting final look

a) geometry processing stage b) fragment shading stage

Fig. 2: The surfel rendering pipeline.

Such an aggressive solution eventually leads to another sort
of artifacts, allowing for distant surfels to be blended on top
of closer ones, as shown in Figure 3b. The proper solution
for both problems is to render the surfels in a back-to-front
fashion. Unfortunately, due to the large quantity of surfels
involved, view-dependent surfel sorting would substantially
hurt the performance.

A more viable approach is a two-pass rendering algo-
rithm [4], [5]. Initially, visibility splatting is performed, where
only the depths of surfels are rendered. The depth buffer
produced by this first pass (Figure 3c) will serve as a read-
only resource for depth tests during the subsequent pass. In
the second pass, surfels are issued for rendering again, but
this time only shading is performed with no depth being
outputted (Figure 3d). This technique, however, is only suitable
for hermetic surfaces, which are difficult to reconstruct while
scanning fast moving objects with the proposed framework.

Due to the irregular, non-hermetic nature of the surfaces in-
herent in the 4D media being addressed, proper surfel splatting
coverage is difficult. Increasing the surfel splat size improve
the results, but not without reintroducing sharp square-shaped
boundary artifacts, as can be observed in Figure 3e.

As a solution, this paper proposes increasing the splat size
of the surfels only during the second rendering pass. The
advantages of this simple approach are twofold: it helps on
covering surface holes, while at the same time yielding an
even smoother look to the rendered object, as demonstrated
in Figure 3f. The disadvantage is an increase in fragment
overdraw, which is only a concern at extreme close-ups when
pixel fillrate performance can become a rendering bottleneck.

VI. SPARSE VOXEL OCTREES

Representing point clouds as sparse voxel octrees brings
many advantages. First, it is possible to discard point coor-
dinates, since the geometry is implicitly represented by the
hierarchy. Second, voxelization can be used to filter noise
locally and simplify the point cloud. Lastly, voxel hierar-
chies allow for automatic multi-scale representations, level-of-

Fee

(a) o ©

/

Fig. 3: Surfel splatting on a pose of the “kick” 4D point cloud dataset: a) regular splatting; b) splatting without depth; c) two-pass
splatting: visibility pass; d) two-pass splatting: shading pass; e) fully enlarged splatting (2x); f) proposed enlarged splatting (2x).

detail (LOD) control and progressive rendering. Octrees also
subdivide space regularity, thus requiring little bookkeeping
information internally. This facilitates the process of traversing,
modifying and storing the data structure.

Most of this section is intended as a gentle introduction to
sparse voxel octrees. The contents to follow serve as a guide
to the process of compiling and rendering simple SVOs built
from raw point cloud data. Encoding of normal vectors and
colors within the octree hierarchy will not be addressed in
this paper. The interest reader is directed to [11] for a more
in-depth discussion on the aspects not covered here.

A. Building the Octree Hierarchy

An octree is a three-dimensional extension of a quadtree,
which itself is a two-dimensional extension of a binary-tree.
Each node of the octree spawns up to eight children, each child
describing the space occupancy of a particular octant. Space is
subdivided uniformly by halving its boundaries in each of the
three mutually perpendicular planes. This means that each of
its eight octants have the exact same volume, hence uniquely
defining a non-intersecting partition of the whole space.

The first step is to compute the axis-aligned bounding box
(AABB) surrounding the whole point cloud. The length of
the longest direction is selected as the edge length of the
cube that will enclose the entire octree. The AABB is then
appropriately scaled in all directions to reflect the new length.
This ensures that all voxels will have cubic appearance instead
of rectangular prisms.

Starting from the root of the octree, each point is classified
as belonging to one of its internal octants. If there are points
occupying an octant, a new node is assigned to that octant.
Recursion follows at the newly created node with its own
enclosing points. The recursion will only stop if an octant is
empty or when a certain stop criterion is established. Consult
Figure 4 for an example of octree construction.

There is no universal rule for the stop condition. A
common approach is to stop subdivision once the octree
reaches an arbitrarily defined depth. Despite being empirical,
this is tedious since each pose of the 4D media might be
best represented with a different maximum depth. Another
approach is to stop subdivision once a certain number of
points, at most, is contained within the octant. This, however,
causes isolated points to occupy comparatively larger octants
that, when rendered, appear incompatible with the expected
majority of smaller octants, as can be seen in Figure 5.

As an alternative, this paper proposes a simple yet very
effective stop criterion for subdividing point clouds. The ra-
tionale is that an octree is subject to further subdivision only if
the total amount of octants at the deepest level is comparatively
lower than the size of the point cloud. More formally, the
condition oct(h)/n < 1 — § drives the subdivision, where
oct(h) is the number of occupied octants at level h, and n is the
total amount of points in the entire point cloud. The constant
0 is a threshold that determines the acceptable loss during
voxelization. A threshold of 0% implies on an ideal 1:1 ratio
between terminal octants and points, while higher thresholds
produce coarser but more compact volume hierarchies.

In practice, due to noise and irregularities imposed by the
scanning process, maximum subdivision is unnecessary and
higher thresholds can be used as filters. The stop condition
just described is largely automatic and dynamic, adjusting
itself according to the geometrical characteristics of each point

o . 4 NE
) @ °d @ d © J
o © b o e o b o o
° 9

point cloud cubic AABB root octant
octree level 0

root's children octants children’s octants
octree level 1 octree level 2

Fig. 4: Octree subdivision example of a simple point cloud.

Fig. 5: Different poses of the “basketball” 4D point cloud
dataset: incoherent voxel size due to isolated points producing
larger octants when using an occupancy-based stop criterion.

cloud. Besides, it enforces that all leaf nodes will lie in the
same octree level, thus giving them the same consistent size
and aspect. This last feature is also particularly useful since it
allows for very compact, breadth-first storage of octrees using
only a single 8-bit mask per octree node.

B. Voxel Rasterization

Prior to rendering the voxels, the first step is to identify
a potential set of visible voxels. This is done by comparing
the view frustum of the camera against the octree hierarchy.
Starting from the root octant, if it intersects with the frustum,
the next level is traversed and the process repeats for each
occupied octant. Octree traversal stops when there are no more
subdivisions left or if the projected area of the octant on the
screen is less than the area of a pixel. This ensures automatic
LOD selection. For efficiency, frustum-octant intersections
can be implemented as frustum-sphere intersections, with the
diagonal of the octant serving as the diameter of the sphere.

Every time the traversal is halted due to one of the two
aforementioned conditions, the position and size of that voxel
are appended into a buffer. These attributes are determined
implicitly as the octree is traversed since the AABB enclosing
the entire octree is known. Once the octree is fully traversed
and the buffer complete, any of the hardware instancing
methods described in Section IV can be used for rasterizing
the voxels. The canonical template for a voxel is the cube
enclosed by the extreme vertices ¢pin = (—1,—1,—1) and
Cmaz = (+1,41,+1). Refer to Figure 6 for a point cloud
rendered through voxels at different LOD.

VII. RESULTS AND DISCUSSION

This section compiles and analyzes the performance of
the different techniques presented in the paper. Additional
rendering results are also provided in Figures 7, 8 and 9.

The overall characteristics of the investigated datasets are
described in Table I. Performance results were profiled based
on the following hardware and software configurations:

e CPU: Intel Core i5-2540M 2.60GHz with 4GB RAM
e GPU: NVIDIA Quadro 3000M with 2GB VRAM

e Operating System: Windows 7 Enterprise 64bit SP1
e Graphics and Shaders: OpenGL/GLSL 4.2

LOD:9

Fig. 6: A single pose of the “basketball” 4D point cloud dataset
rendered via voxels at increasing level of detail (octree depth).

dataset

[poses | points per pose (average) |

baseball 115 88,315
basketball 114 87,003
kick 150 101,931
soccer (juggle) 116 92,352
soccer (shoot) 60 60,976

TABLE I: Characteristics of the investigated datasets.

High-resolution performance counters were used for CPU
profiling, while OpenGL Timer Query objects were used
for GPU profiling. Rendering performance was obtained by
averaging individual frame rendering times at distinct view-
points. Each viewpoint was rendered in 1920x1280 pixels of
resolution, with 25% to 85% of the pixels being covered by
shaded fragments. The rendering techniques described in this
paper were also successfully tested on a slower computer
equipped with an older NVIDIA GeForce 8600M GT (256MB)
graphics card, but for brevity these results will not be listed.

Surfel rendering performance using the proposed two-pass
enlarged surfel splatting algorithm of Section V-B is listed in
Table II (2x splatting). The table shows the average frame
rendering time, in milliseconds, for each of the instancing
methods investigated in Section IV. From the results, the
Geometry Shader approach was the fastest. An explanation for
this is that the hardware may have a fast rendering path for
offloading quadrilaterals from the Geometry Shader unit — one
of its original design motivations was accelerating billboard-
based particle effects. The use of regular vertex buffers was the
slowest amongst the buffering methods offered by the hardware
instancing pipeline. This is surprising because it is the method
that more naturally shares and exposes per-instance attribute
data between the application and the shader program. Another
interesting fact is that uniform buffers performed faster than
the others even though several draw calls were necessary.

dataset Geometry Hardware Instancing Pipeline]
Shader | uniform buffer [texture buffer | vertex buffer |

baseball 4518 7.461 7.873 13.11

basketball 3.673 6.387 6.782 12.15

kick 5.177 8.218 8.933 14.96

soccer (juggle) 4.921 7.843 8.236 14.40

soccer (shoot) 3.323 5.397 5.658 9.099

TABLE II: Average surfel rendering time (per-frame) using
hardware-accelerated geometry amplification and instancing.

Structural characteristics, build time and traversal time of
sparse voxel octrees are listed in Table III. The use of 6 = 0%

actual octree performance (ms)
’ dataset ‘ 9 ‘ loss } depth [nodes [leaves % build | traverse %

2% 0.65% 11 192,299 87,737 28.47 15.67

baseball 10% 3.60% 10 107,161 85,137 21.21 11.72
50% 32.6% 9 47,638 59,523 13.17 6.732

2% 0.71% 11 189,559 86,383 28.4 15.05

basketball 10% 4.19% 10 106,198 83,361 19.34 11.60
50% 32.7% 9 47,618 58,579 12.83 6.417

2% 0.96% 11 201,762 100,948 33.77 16.22

kick 10% 8.15% 10 108,137 93,625 23.18 14.24
50% 38.6% 9 45,586 62,551 16.2 7.458

soccer 2% 0.61% 11 206,292 91,789 30.36 16.85
(juggle) 10% 3.38% 10 117,056 89,235 21.08 12.73
50% 30.9% 9 53,249 63,807 13.62 7.053

soccer 2% 0.49% 11 141,737 60,676 20.08 10.55
(shoot) 10% 2.88% 10 82,519 59,217 14.73 9.137
50% 28.2% 9 38,717 43,802 10.07 5.076

TABLE III: Sparse Voxel Octree construction summary.

is not listed as it yields aggressive subdivision with several
dozens, sometimes hundreds, of subdivision levels. At such
levels, numeric precision can become a problem. In addition,
too many nodes have to be allocated to hold a comparatively
much lower number of actual leaf octants. Rendering is also
unlikely to benefit from such extreme subdivisions since, at
normal viewing stances, LOD traversal would halt at much
coarser levels based on the screen-projection size criterion. The
“actual loss” field in Table III represents the occupancy ratio
oct(h)/n of Section VI-A at the deepest octree level reached
(the “depth” field) when the § stop criterion was met. From the
observed loss ratios, 6 = 5% reflects a good default threshold
value suitable for the 4D media produced by the framework.
Refer to Figures 6 and 7 (bottom) for illustrative examples of
the effects of § and the maximum depth of the octree.

Build and traversal of octrees requires CPU cycles, and
their reported performance is based on a single-threaded exe-
cution context. Multi-threaded executions of these algorithms
are possible, but not considered in this paper. The hierarchy
can be constructed offline, in which case the octree can be
serialized in breadth-first order using only 1 byte per node.
Octree traversal is necessary when a new pose is to be rendered
or whenever the viewpoint changes.

Voxel rasterization time is given in Table IV, for each of
the instancing methods investigated in Section IV. Contrary to
the surfel case, the Geometry Shader approach was the slowest.
This reinforces the supposition that the hardware has a fast path
for quadrilaterals in the Geometry Shader unit. For the case of
a more complicated geometric profile (like a voxel’s cube) the
general-purpose hardware instancing pipeline performs better.
As was the case with surfels, amongst the buffering strategies
of the hardware instancing pipeline, uniform buffers were the
fastest even with the increased draw call footprint, and regular
vertex buffers were the slowest.

dataset octree | Geometry | Hardware Instancing

” depth Shader [unif. buff. T tex. buff. | vertex buff. |
baseball 10 3.594 2.639 2.784 5.788
basketball 10 3.454 2.549 2.773 5.599
kick 11 3.914 2.831 3.167 6.229
soccer (juggle) 10 3.763 2.742 2.961 6.083
soccer (shoot) 10 2.466 1.835 1.927 4.071

TABLE IV: Average voxel rendering time (per-frame) using
hardware-accelerated geometry amplification and instancing.

6=50%
29% loss
LOD:9

0 =10%
3% loss
Lop:10 &

=2%
0.5% loss
LOD:11

Fig. 7: Different poses of the “soccer (shoot)” 4D point cloud
dataset rendered through surfels (top row) and voxels (bottom
row). Distinct LOD were used for the voxel images.

VIII. CONCLUSION AND FUTURE WORK

This paper established a framework for acquiring, com-
pressing and displaying point clouds of moving objects
scanned at high speeds. In particular, surfel and voxel ren-
dering techniques for these point clouds were described. More
specifically, modern graphics hardware features were exploited
for real-time amplification and instancing of point primitives.

Due to surface reconstruction irregularities inherent in the
framework, additional efforts were accounted during the design
of the rendering system. One such efforts was the introduction
of a novel surfel splatting strategy for the two-pass surfel
splatting algorithm. Another accomplishment was the proposal
of a simple yet compelling stop criterion for octree subdivision
driven by raw point clouds.

Both the surfel and voxel rendering techniques described
in this paper are effective for rendering the 4D media of
the established framework. Sparse voxel octrees are specially
attractive for allowing automatic LOD control and progressive
rendering. The latter feature is notably useful for streaming
data through a network, as is the case in telepresence applica-
tions. The downside is the additional processing time required
for constructing and traversing the octrees.

As future work, normal and color information must be
incorporated to the octree hierarchy. The use of splat size
during octree construction must also be considered. Multi-
threaded implementations of octree building and traversal
algorithms also have to be investigated. Finally, octrees might
become viable approach for compressing the 4D media by ex-
ploiting spatial and temporal coherence in the dataset. Entropy
reduction techniques and prediction-based encoding schemes
for octrees are also subject of further research.

Fig. 8: Different poses of the “baseball” 4D point cloud dataset rendered through surfels (top row) and voxels (bottom row).

f

!

(1184144

Fig. 9: Different poses of the “soccer (juggle)” 4D point cloud dataset rendered through surfels (top row) and voxels (bottom row).

ACKNOWLEDGMENT [3] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Surface splatting,” in

Proceedings of the 28th annual conference on Computer graphics and

This work was supported in part by SCOPE No.101710002 interactive techniques, ser. SIGGRAPH '01. New York, NY, USA:
and NEXT program No.LR030 in Japan. ACM, 2001, pp. 371-378.

[4] L. Ren, H. Pfister, and M. Zwicker, “Object space EWA surface splat-

ting: A hardware accelerated approach to high quality point rendering,”

REFERENCES in Computer Graphics Forum (Eurographics 2002), vol. 21, no. 3, Sep.
2002, pp. 461-470.

[5] G. Guennebaud and M. Paulin, “Efficient screen space approach for
. . . . hardware accelerated surfel rendering.” in VMV, T. Ertl, Ed. Aka
conference on Computer graphics and interactive techniques, ser. GmbH. 2003 485-493
SIGGRAPH ’00. New York, NY, USA: ACM Press/Addison-Wesley ’ » PP ’
Publishing Co., 2000, pp. 335-342. [6] S. Yamazaki, R Saga_wa, H Kawasaki, K. Ikeuchi, and M. Sakauchi,
[2] P. W. C. Maciel and P. Shirley, “Visual navigation of large environments Mllc(:rzfacet b]lellbzar(?mg, m;g]‘;%se%ggs ij thf]\fﬁ’ ESu o8 mlfhlfis
using textured clusters,” in Proceedings of the 1995 ACM SIGGRAPH VSW’T § ‘fl’ gf’E en e””ﬁ’: Se/‘; ation. 2000 re- 31"69‘ 1eé0 witzerland,
symposium on Interactive 3D graphics, ser. 13D *95. New York, NY, witzerland: Eurographics Association, » PP o
USA: ACM, 1995, pp. 95-t. [7] L. Kobbelt and M. Botsch, “A survey of point-based techniques in

[1] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: surface
elements as rendering primitives,” in Proceedings of the 27th annual

[8]

[9]

[10]

(11]

computer graphics,” Computer and Graphics, vol. 28, no. 6, pp. 801—
814, Dec. 2004.

S. Laine and T. Karras, “Efficient sparse voxel octrees,” in Proceedings
of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics
and Games, ser. I3D ’10. New York, NY, USA: ACM, 2010, pp.
55-63.

R. Furukawa, R. Sagawa, H. Kawasaki, K. Sakashita, Y. Yagi, and
N. Asada, “One-shot entire shape acquisition method using multiple
projectors and cameras,” in Image and Video Technology (PSIVT), 2010
Fourth Pacific-Rim Symposium on, nov. 2010, pp. 107 —-114.

I. Daribo, R. Furukawa, R. Sagawa, H. Kawasaki, S. Hiura, and
N. Asada, “Efficient rate—distortion compression of dynamic point cloud
for grid-pattern-based 3d scanning systems,” 3D Research, vol. 3, pp.
1-9, 2012.

S. Laine and T. Karras, “Efficient sparse voxel octrees — analysis, exten-

sions, and implementation,” NVIDIA Corporation, NVIDIA Technical
Report NVR-2010-001, Feb. 2010.

