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Abstract—3D human pose estimation from a single 2D video
is an extremely difficult task because computing 3D geometry
from 2D images is an ill-posed problem. Recent popular solutions
adopt fully-supervised learning strategy, which requires to train
a deep network on a large-scale ground truth dataset of 3D
poses and 2D images. However, such a large-scale dataset with
natural images does not exist, which limits the usability of
existing methods. While building a complete 3D dataset is tedious
and expensive, abundant 2D in-the-wild data is already publicly
available. As a consequence, there is a growing interest in the
computer vision community to design efficient techniques that
use the unsupervised learning strategy, which does not require
any ground truth 3D data. Such methods can be trained with
only natural 2D images of humans. In this paper we propose an
unsupervised method for estimating 3D human pose in videos.
The standard approach for unsupervised learning is to use the
Generative Adversarial Network (GAN) framework. To improve
the performance of 3D human pose estimation in videos, we
propose a new GAN network that enforces body consistency over
frames in a video. We evaluate the efficiency of our proposed
method on a public 3D human body dataset.

I. INTRODUCTION

3D human pose estimation is a fundamental problem in
computer vision aiming to extract 3D poses of people from
2D images or videos. It has many applications in areas such
as motion capture, surveillance, robot technology, computer
generated imagery, medical science and military. The objective
is to estimate the relative 3D orientation and length of bones
(up to an unknown scale) of a template human skeleton from
in-the-wild 2D observations. This is known to be an ill-posed
problem due to the multiple possible combinations of pose,
shape, color and illumination that can produce the exact same
2D image. Nevertheless, with the help of deep learning and
constraints carefully designed for the human body, several
solutions have recently been proposed with impressive results
[1]–[3].

Recently, using fully supervised methods have been proven
to be a successful strategy on publicly available datasets.
Effective approaches have been proposed that focus on multi-
view pose estimation or pose estimation from videos. How-
ever, most of existing methods require to train the 3D human
pose estimation networks with labeled 3D ground truth data,
which are few. As a consequence, state-of-the-art techniques
lack in generalizability. To generate ground truth 3D pose
dataset, expensive equipment such as motion capture systems
must be used. Such systems need to be carefully calibrated and

Fig. 1. Overview of our model. Our proposed method takes as input a multi-
view-multi-pose (MVMP) 2D video and outputs the corresponding set of 3D
poses using an unsupervised learning strategy.

require an elaborate setup with multiple sensors and bodysuits,
which is impractical to use outside.

On the other hand, there is abundant unlabeled in-the-wild
2D data such as videos on YouTube or photos on Instagram.
How to take full advantage of these abundant unlabeled 2D
data for 3D human pose estimation is a challenging problem
which is attracting growing interest in the Computer Vision
Community. Weakly-supervised methods use partially labeled
data or data with low reliability as input. Unsupervised meth-
ods do not need any labeled data when training the network.

While most 3D human pose estimation methods from videos
are based on fully supervised training, there are few researches
about using unsupervised methods to estimate 3D poses from
videos. Inspired by the work of Kudo et al. [4], we extend the
unsupervised single-frame 3D pose estimation framework for
the case of multi-frame 3D pose estimation. We notice that
although multi-view 3D pose estimation has been popular and
successful, all the existing works assume that the person is in
the same pose from a single view or different views. In contrast
we argue that the pose of the person is changing in different



views in the case of a video. This is a new challenging problem
that we call multi-view-multi-pose (MVMP) estimation. Our
proposed method uses the GAN framework as a backbone
method for unsupervised 3D human pose estimation from 2D
input videos. To take full advantage of the input videos, we
introduce body consistency in the structure by considering the
consistency of human skeletons over several frames which is
shown in Fig.1. Compared to the original work of [4], our
proposed method can reduce the error by 10%. The main
contributions of our work are two-fold:

• We extend our model to process multi-frame 3D human
pose estimation with input of videos.

• To improve the accuracy we introduce constraints of body
consistency over frames into our model and reduce the
error effectively.

II. RELATED WORK

Existing 3D pose estimation methods can be divided into
end-to-end methods and 2-step methods. It is proven that 2-
step methods which separate the task of 3D pose estimation
into 2D pose estimation and lifting 2D pose to 3D subse-
quently outperform end-to-end approaches [1]. We focus our
discussion about related works on methods that use the 2-
step approach. We further separate existing works into three
classes: (A) fully supervised methods, (B) Weakly supervised
methods and (C) unsupervised methods.

Recently general adversarial network(GAN) is widely used
to implement weakly supervised methods and unsupervised
methods [2], [5]. Given a training dataset, GAN learns to
generate new data with same features as the training dataset
[6]. A typical GAN always consists of a generator and a dis-
criminator. The generator tries to produce images similar to the
input images and confuse the discriminator. The discriminator
tries to distinguish the output of generator from real images
in the dataset.

A. Fully supervised training

Fully supervised methods have been proposed that use
paired ground truth 2D-3D data for training. The 2D data
consists of ground truth 2D locations of joint landmarks,
while the 3D data consists of the corresponding ground truth
3D coordinates of the joints. For example, Martinez et al.
[1] propose to learn a regression network to estimate 3D
joints from 2D joints. Moreno-Noguer et al. [7] propose to
learn a regression network from 2D distance matrix to 3D
distance matrix by using 2D-3D correspondences. Exemplar
based methods [8]–[10] are proposed which use 3D skeletons
for nearest-neighbor look-up. Tekin et al. [11] combined 2D
and 3D image cues relying on 2D-3D correspondences. Wang
et al. [12] use 3D data to train an intermediate ranking network
and extract the depth ordering of pairwise human joints from
a single image. Sun et al. [13] use a 3D regression network
based on bone segments instead of using joint coordinates
directly.

B. Weakly supervised training

Weakly supervised approaches use unpaired 3D data to
learn priors on shapes or poses. Part of data used in weakly
supervised approaches can be unlabeled or with low-quality
labels. For example, Zhou et al. [14] use a 3D pose dictionary
and capture how poses appear from different camera views.
Brau et al. [15] treat 3D pose as hidden variable and learn
pose priors with an independently trained network. Tome et al.
[16] leverage 2D annotations to train networks for estimating
3D poses. Tung et al. [17] propose to use an adversarial
network with 2D projection consistency to learn from unpaired
2D-3D data. Ronchi et al. [18], use 2D data with ordinal
annotations for weakly supervised 3D estimation. Dabral et al.
[19] propose to implement additional constrains on estimated
bone length and joint angles. Rhodin et al. [20] utilize multi-
view consistency constraints with a few 3D ground truth data
to avoid poses collapsing to a single location. Yang et al.
[2] propose a multi-source adversarial structure which takes
advantage of in-the-wild data to improve the performance of
3D pose estimation.

C. Unsupervised training

Rhodin et al. [21] implement an unsupervised approach to
learn a geometry-aware body representation. They propose an
encoder-decoder to map one view of human pose to another
view with multi-view consistency loss. Kudo et al. [4] pro-
pose an unsupervised adversarial structure with re-projection
constraint to recover 3D pose estimation with unlabeled 2D
data. They have better results compared with baseline approach
[22]. Chen et al. [5] propose to add geometric self-supervision
to improve the performance of the unsupervised adversarial
network. We are inspired by this strategy, but we focus our
work on 3D pose estimation from videos while the methods
mentioned above focus on estimation from single frames.

D. Pose estimation in video

Most of previous works concentrate on estimation from
single frames. Recently there have been efforts in imple-
menting estimation from videos taking advantage of temporal
information to produce accurate estimation which is robust to
noise. B. Tekin et al. [23] propose to infer 3D poses from
the histograms of oriented gradients (HoG) features of spatio-
temporal volumes. Katircioglu et al. [24] use LSTMs to refine
3D poses predicted from single images because of the well-
known efficiency of LSTM for the task of temporal input.
Hossain et al. [25] propose a sequence-to-sequence LSTM
structure which encodes a sequence of 2D poses from a video
and then decodes it into 3D poses. Lee et al. [26] propose
to use RNN to learn 3D estimation from priors on body part
connectivity. Recently Pavllo et al. [3] propose a temporal
dilated convolutional model which can produce robust 3D pose
estimation from videos whose length can be up to 243 frames.

III. OUR PROPOSED METHOD

We propose a multi-view-multi-pose (MVMP) 3D pose
estimation method using unsupervised adversarial structure.



Fig. 2. Framework of our model. After the 2D keypoints are fed into generator, 3D pose estimation will be produced. Body consistency is calculated by the
bone length differences of 3D skeletons to optimize the generator network. The 3D pose will be fed into discriminator. After rotated randomly and re-projected
to 2D plane, adversarial loss will be calculated by difference of re-projection and real 2D images to further optimize the network.

Body consistency is implemented in the model to improve the
performance with multi-frame input.

A. Overview

As shown in Fig.2, our proposed model consists of a
generator and a discriminator similar to a typical GAN. A
sequence of images sampled from the input video is fed into
the generator. The generator in the network works as a 3D
pose estimator. The outputs of the generator are joint depths
of corresponding input 2D joints. Therefore 3D joint locations
can be computed from 2D joint locations and estimated joint
depths. The 3D pose will be rotated by random degree while
the spin axis is perpendicular to the ground, since the camera
views are usually parallel to the ground plane. The rotated
3D pose is then re-projected orthogonally into the 2D image
plane. The re-projection is fed to the discriminator and the
discriminator learns to distinguish the 2D-projection from real
2D poses which are in the dataset. During the training pro-
cess, the generator learns to produce plausible 3D poses and
corresponding 2D re-projections to confuse the discriminator,
and the discriminator tries to discriminate between the re-
projected 2D poses and the real ones. If the 3D poses given
by the generator is plausible enough, it will be hard for the
discriminator to distinguish the re-projection from a real 2D
pose. Therefore a well-trained generator can be considered
as a good 3D pose estimator after the training process. We
introduce a network structure similar to [1] [5] in which the
generator consists of four residual blocks and the discriminator
consists of three residual blocks.

B. Adversarial Loss

The balancing problem between generator and discriminator
during training process is one of the well-known problems
of GAN. For example the discriminator sometimes performs
better than the generator, which makes the generator perform
much worth than expected. The loss function used in back-
bone method [4] is similar to the loss function proposed by
Goodfellow et al. [6] :

Ladv = Ex∼Pdata
[logD(x)] + Ex∼PG

[log(1−D(x))] (1)

where Pdata refers to the probability distribution of real 2D
pose, PG refers to the probability distribution of generated 2D
pose and D refers to the discriminator. When the network is
being trained, the generator aims to minimize Ladv while the
discriminator aims to maximize Ladv .

One of the current solutions to solve the balancing prob-
lem of original GAN is Wasserstein GAN using Wasserstein
distance [27], which is a measure of the distance between
two probability distributions known as Earth Mover’s distance.
Wasserstein GAN, also known as WGAN, uses Wassterstein
loss to replace the loss function in the original GAN. The loss
function is shown as follows:

Ladv = Ex∼Pdata
[fw(x)]− Ex∼PG

[fw(x)] (2)

where fw refers to a discriminator network with parameters w.
w is limited in a certain range when the discriminator is being
trained. Wasserstein GAN allows significant improvements
compared with the GAN, notably on solving the balancing
problem of GAN.



C. Sampling Strategies

The input of our proposed GAN is an image sequence
with a length of L frames sampled from the input video. We
compared two sampling strategies. The first strategy samples
adjacent frames in the video and the second strategy samples
frames between an interval of L/k to take more advantage of
the temporal information hidden in the video.

D. Body Consistency

Fig. 3. Illustration of body consistency. The body consistency includes two
parts, one is the difference between symmetric body part within a single
skeleton, the other is the difference between the corresponding body parts
over several frames.

We propose to use loose body consistency constraints to
improve the accuracy of 3D pose estimation from 2D videos
as shown in Fig.3. These constraints enforce the bone length
symmetry between different body parts of a single person and
bone length of the same person in different frames.

In a single frame we reason that the corresponding parts of
a single person, such as left arm and right arm, should have
same bone lengths.

Lsym =

k∑
i=1

∑
j∈Ssym

∥∥Bij −B′ij
∥∥2
2

(3)

where k is the number of frames in the input sample, and i is
the frame number. Ssym includes symmetric body parts such
as left arm and left leg. Bij is the bone length of a body part
such as left arm and B′ij is the bone length of the symmetrical
body part of Bij such as right arm.

In multiple frames we argue that the length of the bones of
the same body part of a person should not change.

Ltem =

k−1∑
i=1

∑
j∈Stem

∥∥Bij −B(i+1)j

∥∥2
2

(4)

where Stem includes all the body parts. Bij is the bone length
of j-th body part in i-th frame.

IV. EXPERIMENTS

We show quantitative results and qualitative results on the
widely used Human3.6M dataset for evaluation. During the
training process we assume that 3D ground truth is unavail-
able. Only in testing process we use 3D ground truth for
evaluation purpose.

A. Dataset and Evaluation

Human3.6M is one of the largest 3D human pose datasets,
consisting of 3.6 million 3D human poses. The dataset contains
video and motion capture (MoCap) data from 5 female and 6
male subjects. Data is captured from 4 different viewpoints,
while subjects perform typical activities such as talking on the
phone, walking, eating, etc. In our experiment we use subjects
1,5,6,7,8 for training and subjects 9,11 for testing. To evaluate
our system, we use the Mean Per Joint Position Error(MPJPE)
which is widely used in 3D human pose estimation.

B. Training details

We used a batch size of 512 which balanced the speed and
performance. We trained the network for 50 epochs. Following
Kudo et al. [4], the weight of each layer was initialized by
Gaussian distribution with standard deviation of 0.14. The
generator and discriminator were updated in every epoch. To
optimize the balance between generator and discriminator we
stopped updating the generator when its accuracy became
larger than 0.9 and stopped updating discriminator if the
accuracy became smaller than 0.3. The model was trained
with Intel Core i7-8700K CPU, Nvidia 1080Ti GPU and 16GB
RAM.

C. Results and Discussions

Fig. 4. Quantitative results. The comparison between our model with different
sampling frame amounts and sampling strategies and single-image models.

As shown in Table 1 we compared our results with state-
of-the-art results including methods processing single images
and videos. Our approach with loose body consistency con-
straints outperformed most unsupervised methods. Note that
the implementation of the network proposed by Chen et
al. [5] is not provided by the authors. As a consequence
we did our best to faithfully implement the method in [5]
based on the descriptions in the paper. We report the results
obtained with our own implementation of [5]. Even though
the results obtained with our proposed method are not as good
as those obtained by state-of-the-art supervised methods, our
proposed method does not rely on any 3D ground truth dataset.



TABLE I
QUANTITATIVE RESULTS OBATAINED ON THE HUMAN3.6M DATASET

Method Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
supervised

Martinez et al. [1] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Iskakov et al. [28] 19.9 20.0 18.9 18.5 20.5 19.4 18.4 22.1 22.5 28.7 21.2 20.8 19.7 22.1 20.2 20.8

self-supervised
Kocabas et al. [29] - - - - - - - - - - - - - - - 60.6

semi-supervised
Pavllo et al. [3] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

weakly-supervised
Wandt et al. [30] 77.5 85.2 82.7 93.8 93.9 101.0 82.9 102.6 100.5 125.8 88.0 84.8 72.6 78.8 79.0 89.9

Yang et al. [2] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
unsupervised

Kudo et al. [4] 125.0 137.9 107.2 130.8 115.1 127.3 147.7 128.7 134.7 139.8 114.5 147.1 130.8 125.6 151.1 130.9
Chen et al. [5] 97.1 99.4 83.2 93.8 100.3 115.4 95.2 96.9 111.4 112.7 94.1 104.1 101.5 86.3 96.5 99.2
Ours(2-frame) 89.9 92.4 78.5 91.8 93.0 97.1 88.7 86.4 97.1 101.0 89.2 98.3 90.3 71.5 79.0 89.6
Ours(5-frame) 88.0 89.6 75.0 91.3 90.9 93.5 86.8 81.5 93.7 100.3 88.0 97.2 87.6 70.8 78.4 87.5

Ours(10-frame) 87.4 89.1 74.7 90.2 90.5 93.3 86.2 80.1 93.5 99.7 87.8 96.4 87.2 70.3 77.6 86.9
Ours(20-frame) 87.1 88.7 74.6 90.0 90.3 93.4 85.7 80.2 93.1 99.9 87.4 96.3 87.2 70.0 77.1 86.7

Therefore our proposed method has the advantage that it can
be generalized to any natural videos.

We observed that the choice of the sampling strategy in our
proposed method is crucial. Previous methods for 3D pose
estimation in video always assume that the camera view is
fixed. On the contrary in our MVMP model we assume that the
camera view is moving as the person is moving. That is why
we propose another sampling strategy which aim at making
interval between two sampled frames longer. We reason
that this new sampling strategy can take more advantage
of temporal information. We investigate different sampling
strategies during our evaluation. We implemented a naive
sampling strategy that samples adjacent frames and another
strategy of sampling frames with much longer interval from
the input video. The naive strategy is sampling from frame
number k ∗ n+ 1 to k ∗ n+ k while the other one is sampling
n, (L/k) + n, (L ∗ 2/k) + n, ..., (L ∗ (k − 1)/k) + n. The
second strategy outperforms the first one by about 3 mm in
the condition of sampling 20 frames from a video. Moreover,
with second strategy we tried sampling 2 frames, 5 frames,
10 frames, and 20 frames from the input video. Approach
of sampling 20 frames outperforms approach of sampling 2
frames by 3mm. The results of different numbers of sampling
are shown in Fig.4. With using only the symmetrical loss,
the performance of our model is similar to the performance
of [5]; with using both the symmetrical loss and the temporal
loss we are able to achieve a better performance compared to
state-of-the-art method [5]. We illustrate our qualitative results
in Fig.5 including some visible improvements due to our
body consistency constraints compared with state-of-the-art
unsupervised approaches [5].

V. CONCLUSION AND FUTURE WORK

In this paper we propose our model which is extended
from single-frame GAN approach to process multi-view-multi-
pose(MVMP) 3D human pose estimation in videos. We im-
plement a loose body consistency constraint relying on the
symmetry within a single frame and body consistency over

different frames. This constraint improves the result by about
10%. Additionally we propose a sampling strategy to sample
frames from the input video and make the interval between
two adjacent sampled frames as big as possible, which aims
to take more advantage of temporal information in the input
video. This strategy improves the result by about 3mm.

In the future we plan to implement state-of-the-art multi-
view approach on our MVMP model, inspired by Iskakov et
al. [28]. We reason that there is a way to combine the state-
of-the-art multi-view 3D pose estimation approach with our
model which aims to estimate 3D pose in a video.
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