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Abstract

In this paper, a 3D shape acquisition system consisting of
a laser projector and a video camera is described. A user
projects a stripe of light to the measured 3D scene by hand.
The projected light and LED markers attached to the laser
projector are captured with the video camera. By estimat-
ing the 3D pose of the laser projector from the 2D locations
of the markers, the distance to the surface lit by the laser
can be calculated. The use of alaser projector that projects
a stripe of light enables correction of shape estimation er-
rors from known 3D surfaces. With this system, the user
can measure the 3D shapes of objectsin real time, thereby
confirming the shape acquisition of each part of the surface.

1. Introduction

As CG technology has become common, the specs
needed for 3D scene measurement systems have varied. All
kinds of measurement methods have been studied, from
air borne land-form measurement systems to desktop range
finders, with each having specific pros and cons.

Using the currently available laser range finders, long
range, very precise and dense depth images can be acquired
[1], but the costs of these specially designed devices are
very high. Structured light based stereo or laser stereo sys-
tems are for middle or short range use, with even more pre-
cise and dense measurements[2], but they also require spe-
cia light projecting devices, making their total costs very
expensive.

Stereo vision or motion stereo systems can be much less
expensive since they basically use common digital still cam-
eras or video cameras. Some of them are capable of re-
constructing very large scale scenes, including architectural
features like buildings or landscapes [11]. The disadvan-
tage of these systems is that most of them are feature point
based, making it difficult to get dense shape data without
some kind of sophisticated interpolation mechanism.

Since universal device interfaces like IEEE 1394 or
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USBs have become common, connecting still or video cam-
eras to computers has gotten much easier, suggesting that
vision-based, personal or desktop shape acquisition systems
can bedeveloped. Currently, there are several research stud-
ies which describe low cost, easily available 3D measure-
ment systems [3] [7] [4] [14] [5] [13].

This paper describes a vision based, low cost shape re-
covery system. The devices needed for this system are
a video camera and a laser projector mounted with LED
markers for pose detection. The cost of the system is low
because the laser projectors and LEDs can be purchased
inexpensively. Since this system doesn't require a special
platform for the objects being measured, it is very portable
and can be used to measure small portions of large objects,
for example, reliefsonrelics. Thelaser projector in our sys-
tem emitsalaser plane rather than alaser beam. This makes
it easier to obtain dense depth images, and also makes it
possible to correct errors of 3D position estimation using
information on known surface positions. The measurement
processisdonein real timeasthe sceneis captured by video
camera. Therefore, users can confirm which part of the
depth image lacks data while measuring the scene.

Also described in this paper are the results of error anal-
yses on our device. The analyses imply that attaching addi-
tional LED marker can improve the estimated mean squared
errors of thefinal depth estimations. We could get some ex-
perimental results which supports the results of our analy-
Ses.

2. Related Works

Recently, a number of low cost and easily available 3D
measurement systems have been proposed. In order to be
low cost, most of these systems avoid to using a mechanical
system. Without using a mechanical system, it is neces-
sary to estimate the position of each sensor in order to em-
ploy triangulation to acquire 3D information. So far, various
types of positioning methods have been proposed.

Bouguet and Perond 3] are using shadows to calibrate
the cameraand light source positions. They cast shadowson
the object, and estimate the 3D val ues using these calibrated



parameters. Fisher et a.[7] have modified thisidea.

Woo and Jung[4] have proposed another solution. They
put a cubic framein thefield of view of the camera, and put
the object inside this frame. They then emit a line beam to
the object, and detect the bright point on the cube to esti-
mate the pose of the beam plane and the 3D information.

Takatsuka et al.[14] have adopted a more active method.
They put LED markers on the sensor itself, and capture it
with a single camera to estimate the sensor position. They
use the laser pointer as a sensor, and have proposed a clever
method for efficient 3D data calculation using the detected
LED markers.

Davis and Chen [5] have applied the stereo vision tech-
nique, using mirrors to archive an efficient stereo algorithm
using a single camera.

Since we have attached L ED markerson alaser projector
and capture the markers with a video camera to estimate
position of the projector, our method is close to Takatsuka's
work [14]. However, we used a laser projector which emits
afan-shaped sheet of light spreading within a plane instead
of abeam of light. Therefore, the calibration and estimation
method is closely related to formerly mentioned research
[3I[71[4]-

We have also recognized the importance of the interac-
tive scanning system stated by Rusinkiewicz et al.[13], and
therefore one of our main research purposes is to redize a
real-time system.

3. Shape measurement using a marker at-
tached laser projector

3.1. System configuration

Our system consists of a video camera and a laser pro-
jecting device. The laser projecting device emits a plane of
light, rather than a beam. While measuring, the user hold
the laser projector by hand and projects the laser onto the
measured object. The sheet of laser produces a stripe on the
object, and the user moves the laser so that the stripe scans
the entire object surface. The projected stripe is observed
by the video camera. The shape of the target object is ob-
tained by analyzing the video sequence. In this paper, the
laser projecting deviceis referred to as “awand.” Figure 1
shows the wand and the concept of the 3D measurement.

The location and pose of the laser pointer are also ob-
tained from visual information. To avoid instability of com-
plex image processing, four LED markers are attached to
the laser pointer as shown in figure 1 (a). Four of the mark-
ers are located so that they form a square and so that the
square is placed on the same plane as the sheet of light as
much as possible. The other two markers are located with
certain distances from the sguare.

These markers define the local coordinates in 3D space.

L aser projector
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Figure 1. System configuration: (a) shows the
wand and (b) shows the concept the of 3D mea-
surement.
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Figure 2. Coordinate systems

The origin of the “marker coordinates’ is placed at the cen-
ter of the square formed by the four markers. We define the
marker coordinate system by three unit vectors, e ,ef, and
e. Thefirst and the second coordinates, whose directions
are expressed by e and e/, are taken so that they are paral-
lel to the edges of the square formed by markers. The first
coordinateis parallel to the laser projector. The direction of
the third coordinate e/, is orthogonal to e} and ef,. We also
define camera coordinates defined by e,e2 and e3, where
e; and e, are respectively pardlel to horizontal and verti-
cal directions of image plane, and e3 directed towards the
backward direction of the camera. Figure 2 shows the defi-
nitions of the coordinate systems. Here, we hame 2 planes.
The first one is the plane spanned by e} and e}, which we
call the “marker plane” The second one is the plane where
the laser light is projected, which we call the “laser plane”
If the markers are attached precisely, the marker plane and
the laser plane overlap each other.

When the shape of the target object is scanned, the mark-
ers of the laser pointer are also captured into the frames.
Fromthe 2D locations of the markersin the video frame, the



parameters of the transformation between the camera coor-
dinates and marker coordinates are estimated. The transfor-
mation consists of a 3D rotation matrix R and translation
vector t. Parameters of the transformation are estimated us-
ing the methods described in the following session.

3.2. Estimation of marker plane

From the captured image frame, the location the LEDs
are obtained using simple thresholding and calculating the
center of gravity of the connected pixels. From the detected
LEDs, four LEDs onthe marker plane are selected. To make
the selection easy, the four LEDs on the marker plane have
different colors from the other two.

After detecting the images of the four LED markers, a
description of the lines on the image which go through the
markers is calculated. Then, we select two pairs of lines
which correspond to the opposite sides of the square that
the markers form. For each pair of lines, simple equations
are solved to acquire the coordinate of the crossing point of
thelines. The crossing point is called a vanishing point. If
the lines are paralel on theimage, the VP is defined as the
point at infinity at the direction of the paralel lines.

There are two vanishing points in image which corre-
spond to two unit vectors of the marker coordinate system,
one for the direction of e} and the other for the direction
of e/,. Let the 2D coordinates of these vanishing points be
described as (gon, g1) N pixels, where the origin of the
coordinates is placed at the optical center of theimage.

Then the 3D directions of those vanishing points (r; and
ro ) are

rn = (g()m Jin, _f)t D
where f denotes focal length in pixel and o* denotes
transpose of vectors and matrices. We define é; =
ri/||lrill, (i = 1,2). The unit vectors ¢/, are used as esti-
mation of e/. Estimation €/ is defined by taking a cross
product of the two unit vectors as €}, = € x e}. Figure
3 shows rel ationshi ps between vani shing points and estima-
tionség, (1=1,2).
Using three unit vectors, estimation R of rotation matrix
R can be described as:

R=(6 € €3) 2

Let 2D coordinates of images of first and second mark-
ersbe (p11,p12), (P21, p22). 3D locationsin cameracoordi-
nates of the markers are

m; = (p11u, p12u, —f“)t7 my = (p21v, P22v, —f’U)t-
©)
where u, v are unknown variables. Let the 3D distance be-
tween those markers, which is known value, be D,,,. Then

[my —my| = Dy,. 4)

ihg point

Figure 3. Estimating of direction of marker coor-
dinates

Theequation of the marker planeisexpressed ase §; x+d =
0, where x is a 3D point expressed in camera coordinates.
Since m; and my are on the marker plane,

efym; +d=0(i=1,2). (5)

From equations (3),(4) and (5), d,u,v can be solved.
Then we obtain t, as an estimation of t, by calculating the
center of gravity of 4 locations of the markers.

As mentioned above, the position and pose of the laser
pointer are obtained as a transformation between the cam-
era coordinates and the marker coordinates. To improve the
estimation of the transformation, we optimize it with non-
linear optimization. All the detected LEDs including the
ones which are not on the marker plane are used for the op-
timization. The real locations of the LEDs in the marker
coordinates can be measured in advance. By transforming
the measured locations with the estimated transformation,
the estimated |ocations of markers' images can be obtained.
The estimation of the transformation is refined by minimiz-
ing the sum of the squared distances between the actual
LED positions on the images and the estimated marker po-
sitions, which is described as

fR ) = Z{proj(fim; +t) - pi}, (6)

proj((z1, w2, x3)%) = ((fx1)/x3, (fr2)/23)*  (7)

where p; is a location of image of the ith marker, m/ a
location of the ith detected marker in marker coordinates.
proj(-) is an operation of projection from 3D position in
camera coordinates into image coordinates. The rotation
matrix R is expressed by roll, pitch and yow. The trans-
lation vector t is expressed by 3 components (t1,to, t3).
Thus, the optimization is processed for 6 parameters. We
use simplex descending al gorithm as the optimization algo-
rithm because of ease of implementation.
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Figure 4. Estimating locations of surface points

3.3. Shapeacquisition

Using the estimated parameters of the marker plane,
which is approximately the same as the laser plane, we
can obtain the location of the surface points by triangula-
tion. First, the stripe of light projected onto the target object
is extracted from the image. The pixéels on the stripe are
picked up by thresholding and skeletonizing. The line go-
ing through the origin of the camera coordinates and the
surface point (line of sight) can be calculated for each pixel
using intrinsic parameters, and the 3D location of the sur-
face can be determined by taking the intersection of theline
of sight and the estimated laser plane. Figure 4 shows how
to estimate the surface locations by triangulation.

All calculations are employed in real-time and the esti-
mated depth values are stored in a depth image; this depth
image has the same width and height as captured video
framesand thus, itsdatasizeis 16bit x width x height. The
system display the estimated depth values as animageto the
user in real-time and it helps the user to recognize whether
there is an estimated data or not for each pixel. Therefore,
the user can interactively and efficiently scan the object.

Since this system scan the same pixe repeatedly, all the
estimated depth values for each pixel are averaged to in-
crease the data accuracy. The system also calculates the
standard deviation for each pixel in real-time (after outliers
are rejected) and shows the user this value as an evaluation
of the reliability of the measured depth value to assist the
scanning.

After a scanning has finished, x, y values for all the pix-
elsare calculated by using the depth valuesand theintrinsic
camera parameters as the final results.

3.4. Calibration of thelaser planein themarker co-
ordinates

The LED markers are mounted on the laser pointer so
that the markers plane and the laser plane overlaps as pre-

cisely as possible. Since the mounting is done manualy,
there are always errors in the placement of the LEDs. To
avoid incorrectness in the measurement of the 3D surfaces,
we calibrate the rel ationship between the laser plane and the
markers.

The relationship can be defined as the parameters of the
laser plane expressed in marker coordinates. If the mark-
ers are mounted correctly, the equation of the laser plane
expressed in marker coordinates (1, 2, x3) iszz = 0.

For preparation of the calibration, the following mea-
surement must be conducted in advance. First, a rectangu-
lar parallelepiped, or a box-shaped object, of a known size
is captured. From the image, the location and pose of the
object are estimated using methods of camera calibration.
From the pose, the equations of the planes enveloping the
box are estimated.

We project the laser light onto the surface of the target
object, and capturethelit surface and the markers. Fromthe
markers, the transformation between the marker coordinates
and camera coordinates can be estimated as described in
the previous section. From the transformation and the laser
plane expressed in marker coordinates, the laser planein the
camera coordinates can be cal culated.

Next, theintersecting lines of the laser plane and the sur-
face of the box shaped object are calculated. Then, the im-
ages of the lines can be determined. These lines are the
locations where the light stripes are “supposed” to be pro-
jected if the given laser planeis correct.

Thetruelocation of laser reflection can be detected from
theimage. If there are errorsin the given parameters of the
laser plane, the true locations and cal cul ated | ocations of the
laser reflections don't match as described in Figure 5.

By calculating the sum of directions between the pixels
of the real stripe and the presumed location of stripe, we
can evaluate how those stripes match. The calibration is
done by minimizing this value with non linear optimization
for parameters of the laser plane. We then can get the laser
plane parameters in the marker coordinates such that the
estimated and detected stripes in the image match well. For
the implementation for this paper, we applied the simplex
descending algorithm [12] for the non-linear optimization
using parameters for plane z3 = 0 asinitial parameters.

3.5. Correction of thelaser pointer pose estimation
using known 3D points

When the 3D locations of some part of the measured sur-
face are known, there are constraints between the position
of the laser plane and the location of the image of the light
stripe projected on the known surface. If some part of the
projected stripe of laser is on the region of surface whose
depth values are known as shown in figure 6, the known
depth value and the depth value calculated from the laser
plane estimation should match. We use these constraints to
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correct errorsin the laser plane estimation due to image pro-
cessing errors, asymmetry in the shape of LEDsthemselves,
errorsin theintrinsic parameters of the cameras, etc.

We use differences between the known depth and mea-
sured depth to evaluate how the constraint is fulfilled. As
already described, the pose of the light plane is expressed
as a transformation between the camera and the marker co-
ordinates, which is estimated by minimizing the error func-
tion (6). By using the sum of the differences between the
known and measured depth and the function (6) instead of
using only the function (6), we can correct the estimation of
the laser plane.

In apractical 3D scene measurement, there is oftenno a
priori information about surface of the scene. In this case,
“known points’ should be decided by certain criteria. In
our work, the depth image pixels satisfying the following
conditions are treated as “known”:

e Depth of the pixel is measured more than NV times.

e Standard deviation of measured depth values of the
pixd islessthan o,.

For the experiments described later, we defined N = 5 and
oq = 0.01

4. Experiments and evaluations

4.1. Examples of measurements

To show the performance of the system described in this
paper, we demonstrate two examples of the shape acquisi-
tion. The subject of the first exampleis alight stand shown
in Figure 7(a). We measured the light stand with an image
for thetexture. Figures 7(b)-(e) show the textured 3D model
rendered with different viewpoints. Figure 7(f) shows the
acquired polygons around the top of the lightstand.

For the second example, we measured shape of a plastic
toy from 11 different directions and registered the data sets.
We used algorithms proposed by Miyazaki et al. [10] for
the procedure of generating the polygon model. Figure 8
shows (a) a photograph of the subject, (b) the acquired 3D
model with texture, (c) the acquired polygons rendered as
wireframes, and (d) the registerd models with textures.

and (b) is the registered point set. For the first and the
second example, each of the scanning from one direction
took around 30 seconds.

4.2. Error analyses

To evaluate the errors of our shape acquisition system,
we conducted error analyses. Lety = (y1 92 -+ - yn)! bean
observation vector, whose components are observed coordi-
nates of the marker images, and x be the the objective value
(the distance from the camera to a surface point lit by the
laser sheet). From an observed vector y, a pose estimation
of thewand p = (p1p2 -+ pm)t, is estimated first, then
x is estimated from p. Here, p denotes 6 parameters of R,
(roll, pitch and yow) and t (a 3D vector). We can define a
mapping of projection from p to y, and a mapping of dis-
tance calculation from p to z. The mappings are expressed
as

= 8¢(P) = (9c,1(P) ge2(P) -+ gem(P))". (9)

where ¢ denotes the condition of measurement, such as the
pose and location of the wand and the distance between the
wand and the objective surface.

Let oy = (dy1, - - -, Oym ) bethe observation error vector
added to y, op = (dp1,---,dpn)t be the the estimation
error vector for p, and 6z be the estimation error z. Using
an abridged notation

o (0 0 oY
P Op1 Ops Opm ’

the relationships between the errors above are

(Opfe) op (10)

or =
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Figure 7. Results of shape acquisition from alight
stand: (a) the measured object,(b)-(e) the acquired
3D model rendered from different views, and (f)
the acquired polygons around the top of the light-
stand.
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Figure 8. Results of shape acquisition from a
plastic toy: (a) the measured object, (b) the ac-
quired 3D model with texture, (c) the acquired
polygons rendered as wireframes, (d) the regis-
terd models with textures.

(Opge,1)top
5y = Oplge)dp= : (11)
(OpGe,n)top

To analyze the estimated measurement errors rela
tive to the observation errors, we applied statistical ap-
proaches which are normally used in the field of computer
vision[6],[8],[9], [15]. Assuming that the probability distri-
butions of oy are isotropic and independent normal distri-
butions with the same variances, the most likelihood esti-
mation of p isobtained by minimizing ||y — g.(p)||, where
| - || means a square norm. In this case, the ratio of the
standard deviation of §z on measurement condition ¢ and
the common standard deviation of components of dy can
be estimated by

e(c) = ||(apfat[{%(gi)}t{ap(gz)}]*l{ap<gz>}tH(.lz)

Although only four of the six LEDs are used for estimat-
ing the initial pose of the wand, all the detected LEDs are
used for the refinement process by non-linear optimization.
To examine the effects of using redundant LEDs, we ana-
lyzed two different models, the one with 4 LEDs (4-LED)
and the one with 5 LEDs (5-LED). The reason why we an-
alyzed the model with 5 LEDs instead of the one with 6



LEDsisthat, inreal cases, one of the LEDsis usually hard
to detect because of occlusion of the wand itself.

We calculated ¢(c¢) for various conditions ¢ in case of
both 4-LED and 5-LED models, which are estimations of
relative measurement errors. To validate the estimations, we
also evaluated the relative errors by simulations. The sim-
ulations are conducted with assumptions of isotropic and
independent normal distributions of Jy and the errors of the
objective value z are caused only by the observation errors
of y. For each condition ¢, we repeated the measurement
process 100 times with samples of §y generated by the dis-
tributions, and the mean square of estimation errors of x is
calculated, which we call M eanSqrErrorRate(c).

e(c) and MeanSqrErrorRate(c) plotted for various
conditions ¢ of 4-LED and 5-LED are shown in figures 9-
10 with (a):4-LED and (B):5-LED. Markers represent the
values of e(c) (blank diamonds), MeanSqrErrorRate(c)
(blank sguares). Here, a measurement condition ¢ in-
cludes the rotation matrix R, the trandation vector t, and
the distance between the wand and the measured surface
point. The rotation R is expressed by he parameters of
roll., pitch, and yow.. The trandation t is expressed
by (zc1,2e2,xc3). The subscript ¢ means that the value
is a part of measurement condition ¢. The initial condi-
tion of the experiment was (.1, Tc2, 7e3) = (0,0, —0.8),
roll, = pitch. = yow. = 0 and the distance from thewand
to the measured surface was 0.3. For the experiment of fig-
ure 9, x.; was changed over the domainof —1 < z.; < 1.
For the experiment of figure 10, pitch . was changed over
the domain of — 1% < pitch, < 1T,

For al the results, values of ¢(c) were good estimations
of MeanSqrErrorRate(c) for both 4-LED and 5-LED.
Comparing the cases of 4-LED and 5-LED, the errors of 5-
LED were less than half of those of 4-LED. We could also
see that the values of ¢(c) for the 4-LED model have alocal
peak at x.; = 0 or pitch. = 0, whereas values for 5-LED
don’t. The same tendencies were observed for the ssimulated
errors. Thisimpliesthe effectiveness of using an extraLED
for observations.

We also conducted an experiment of real 3D measure-
ment with various measurement conditions ¢. On measur-
ing, we captured 240 frame images (8 sec with video cam-
era) with the wand being wiggled at each condition. Then
we estimated 3D location of the points lit by the laser for
each frame and cal cul ated the standard deviation and maxi-
mum error values for evaluation.

The initial position and pose of the wand was z.1 =
Teg = 0, .3 = —0.8, and roll, = pitch, = yow, = 0.
About the rotational variation, we changed the yow . of the
pose of the wand from —= to 7 with intervals of 7/12.
About thetranglational variations, we moved the wand from
x = —0.5100.2 with intervals of 0.1.

The experiments for both models of 4-LED and 5-LED

-1 -0.5 0.5 1 -1 -0.5 0.5 1

():4-LED (b):5-LED

Figure 9. Error estimations and simulated er-
rors plotted for -1 < =z < 1; blank di-
amonds indicate e(c); blank squares indicate
MeanSqrError Rate(c).
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(@:4-LED (b):5-LED

Figure 10. Error estimations and simulated errors
177 i} 17w
plotted for — 55 < pitch. < 5.

are done based on the same observed data. One captured
sequence of imagesis processed with both using four of the
LEDs and using five.

Figure 11 shows the results of the experiments. There
were some unmeasured data because of physical constraints
of the wand, the measured surface and the camera (e.g. oc-
clusion by the measured surface, or the LEDs getting out
of the frame). We can see the similarities in tendencies be-
tween the values obtained from the analytical estimations
shown in figures 9 and 10 and the values obtained from the
actual measurement shown in figure 11. For example, the
errors of the real measurements of 4-LED has alocal peak
at x.; = 0 or pitch. = 0, whereas 5-LED doesn’t. Another
similarity is that the errors of 5-LED model were less than
half of those of 4-LED model.

5. Conclusion

In this paper, we proposed a low cost 3D shape acqui-
sition system. The devices required for this system are a
video camera, a laser projector, and LEDs. The LEDs are
attached to the laser projector and are captured by video
camera when scanning to estimate the pose and position of
thelaser projector. To scan objectsefficiently, we usealaser
projector which emits afan-shaped laser planerather than a
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laser beam. The advantages of using a laser plane projector
are not only we can easily scan large area by sweeping the
surface with the stripe of thelaser reflection, but we can also
reduce the scanning errors using information of known 3D
points. In addition, we also proposed an efficient method
to calibrate the relationship between the laser plane and the
LED markers. By using acquired relationship, scanning er-
rors are also successfully reduced.

For the experiments to evaluate the effectiveness of our
3D measurement system, we measured objects and created
textured 3D models of them. We also conducted error anal-
yses for the system, whose results implied the effectiveness
of using additional LED images to refine pose estimation
of the laser projector. Experimental results of real mea
surement showed the same tendencies to our error analyses,
which implied the correctness of the analyses.

In the future, we plan to implement some post-
processing a gorithms to refine the captured data.
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